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Abstract—Given the increasing popularity of wearable devices,
this paper explores the potential to use wearables for steering
and driver tracking. Such capability would enable novel classes
of mobile safety applications without relying on information
or sensors in the vehicle. In particular, we study how wrist-
mounted inertial sensors, such as those in smart watches and
fitness trackers, can track steering wheel usage and angle. In
particular, tracking steering wheel usage and turning angle
provide fundamental techniques to improve driving detection,
enhance vehicle motion tracking by mobile devices and help
identify unsafe driving. The approach relies on motion features
that allow distinguishing steering from other confounding hand
movements. Once steering wheel usage is detected, it further
uses wrist rotation measurements to infer steering wheel turning
angles. Our on-road experiments show that the technique is
99% accurate in detecting steering wheel usage and can estimate
turning angles with an average error within 3.4 degrees.

I. INTRODUCTION

While the emerging ecosystem of mobile and wearable
devices is often viewed as a distraction that can lead to
accidents (e.g., [1]–[4]), it also presents opportunities to pre-
vent accidents through safety services. Mobile and wearable
safety apps differ from conventional built-in automotive safety
systems, which are typically constructed as stovepipe systems
focusing on a specific risk and employ dependable systems
techniques such as multiple levels of redundancy, quantifiable
guarantees on both the timing and paths of state transitions,
and precision sensing. There is considerable interest in using
mobile devices to deliver softer safety services, however,
since they promise low-cost designs that reach a much larger
population.

Existing mobile solutions have used inertial sensing on
smartphones to detect distracted driver behaviors and monitor
driving [5], [6]. In order to apply mobile sensing to driver be-
havior analysis, the devices also need to recognize when their
user is driving and distinguish that from being a passenger.
To date this has been addressed through techniques that allow
the phone to sense its position inside a vehicle and determine
whether it is in the driver area [7]–[9]. Such smartphone-based
sensing techniques remain limited in accuracy, however. For
example, it is challenging to track very gradual transitions
across lanes or to determine that a user is driving when
the phone is placed on the passenger side of the vehicle.
Moreover, increasingly automated and self-driving vehicles
will likely let drivers relinquish driving duties for part of a
route. Current smartphone-based sensing techniques cannot

determine whether a driver is in charge and has the hands
on the wheel.

We therefore ask whether the emerging quantity and di-
versity of wearable devices can be exploited to achieve more
accurate sensing and operation independent of the vehicle.
Apart from some early results [10], the use of wearables in
this domain has so far remained unexplored. Towards this
goal, this paper examines the benefits of wrist-worn inertial
data, such as those from smart watches or fitness bands, when
combined with phone measurements. Such data is particularly
useful for tracking hand movements and can therefore provide
information about the driver’s vehicle operation—most notably
steering wheel usage. To allow more accurate identification of
driving, we first develop an inertial detection technique that
can detect whether the hand is on the steering wheel based on
the hand movements of the driver captured by inertial sensors.
We then extend this technique to also track the turning angle
of the steering wheel. This information can allow for more
precise vehicle motion tracking than gyroscope data and was
previously only available through proprietary interfaces to the
vehicle CAN bus.

Tracking the usage of the steering wheel can help monitor
driving behaviors and identify unsafe driving. For example, the
steering wheel turning angles could be used in lane departure
warning system to warn a driver when the vehicle is about to
drift across the lane. Moreover, unsafe driving behaviors such
as swerving, understeer or oversteer could also be detected
based on the steering wheel turning angles and other inertial
or speed measurements. Just knowing whether a drivers hands
are on the steering wheel is also useful context information
that mobile apps can use to minimize distractions to drivers.

The contributions of our work are summarized as follows:

• We explore the use of wrist-wearable devices, such as
smart watches and wristbands, to track fine-grained
driving behaviors including steering wheel usage and
angle.

• We design a hand on/off steering wheel usage de-
tection method that relies on hand movements of the
driver captured from the wrist-wearable device.

• We propose a steering wheel angle estimation ap-
proach by leveraging the wrist rotation caused by
the movement of rotating the steering wheel. The



proposed approach takes as input the gyroscope read-
ing of a wrist-wearable device, and the relationship
between the wrist and steering wheel rotations, for
real time steering wheel angle estimation.

• We demonstrate through experiments in real driving
scenarios that it is feasible to track fine-grained driving
behaviors using wrist-wearable devices. Our experi-
ments show 99% accuracy in detecting steering wheel
usage and estimation of turning angles with an average
error of 3.4 degrees, when the hand remains on the
steering wheel.

II. RELATED WORK

There have been active research efforts in reinforcing
driving safety by utilizing mobile devices used in vehicles [5]–
[7], [9], [11]–[15]. Some prior contributions have been made
to detecting whether the mobile device user is a driver or
passenger [7], [9], [11], [16], which can facilitate many ap-
plications aiming to mitigate distracted driving, whereas many
works have been done to evaluate or classify driver behaviors
by leveraging mobile sensing technologies (including using
embedded sensors, cameras and other auxiliary devices (e.g.,
OBDII) in mobile devices or vehicles) [5]. In addition, there
are studies on solving driving safety issues by detecting
dangerous steering wheel motions [17], [18].

In particular, Yang et al. [11] introduce an acoustic ranging
system to identify the location of a smartphone in the vehicle
using its audio infrastructure. Wang et al. [7] utilize embedded
sensors in a smartphone and a reference point (e.g., an OBD
device) to capture vehicle dynamics, which can be further
exploited to determine whether the phone is on the left or right
side of the vehicle. However, both works rely on access to extra
infrastructures in a vehicle, which may not be widely available
and thus reduce the chance of adopting the approaches quickly
among a large number of users. Some other work [9], [16]
distinguish whether the phone is used by a driver or passenger
based on the detection of specific movements, such as entry
swing, seat-belt fastening, or pedal press using inertial phone
sensors.

In terms of driving behavior detection, apps, such as iOn-
Road [12], Augmented Driving [13], and CarSafe [19], provide
lane changing assistance and safe following distance based on
the vision of driver or outdoor environment captured by cam-
eras in smartphones. Also, Sober-Drive [20] and CarSafe [19]
detected drowsy driving in a similar manner.These approaches
do vision studies based on the camera of the phone. In
contrast, inertial sensor based approaches [5], [6], [14], [15]
rely less on specific phone placement and more on motion
sensing through phone’s embedded inertial sensors. Castignani
et.al. [5] propose SenseFleet, a driver profile platform that is
able to detect risky driving events independently on a mobile
device. Chen et al. [6] develop a vehicle steering detection
middleware to detect various vehicle maneuvers, including lane
changes, turns, and driving on curvy roads. Johnson et al. [14]
and Dai et al. [15] both propose driving behavior monitoring
systems to track unsafe events based on embedded inertial
sensors in the smartphone. However, these approaches have
limited accuracy on detectable unsafe driving events, since they
only involve smartphones, which more likely capture vehicles’
dynamics instead of drivers’ dynamics.

Moreover, [18] introduces several models that get driving
behaviors from the steering wheel angle. Schmidt et al. [17]
present a mathematical model of the steering wheel angle that
contributes to predicting lane change maneuvers. However,
these approaches need the steering wheel angle data, which
is not readily available in mobile devices. [21] used steering-
wheel-mounted kinematic sensors to estimate the steering
wheel angle. However, this technique still relies on external
sensors that need to be deployed and may cause distraction.

In recent years, wearable devices have been exploited for
motion estimation in many research works. Vlasic et al. [22]
propose a full body motion capture system using inertial
sensors. Raiff et al. [23] use a wristband containing a 9-axis
inertial measurement unit to capture changes in the orientation
of a persons arm, and develop a machine learning pipeline
that processes the orientation data to accurately detect smoking
gestures. We foresee that wrist-worn wearable devices, such as
smartwatches and activity trackers, are particularly useful for
fine-grained tracking driving behaviors, because they capture
the dynamics directly from user’s hand movements. Different
from the above works, we propose a low-infrastructure ap-
proach to accurately determine steering wheel turning angles
based on both smartwatch and smartphone, which can be used
as an input for many driving safety applications.

III. APPLICATIONS AND REQUIREMENTS

The observations that can be gathered from mobile and
wearable devices open new research opportunities that would
be impossible to develop with existing built-in, stovepipe
automotive safety systems. The steering wheel usage is one
example - it can be used to analyze drivers’ behaviors, but
also to inspire additional driver safety applications. Although
cars equipped with Electronic Stability Control (ESC) could
utilize steering wheel angles to determine a driver’s intended
direction, steering wheel angle information is not usually
accessible from the OBD-II port, and therefore not available
for third party applications.

We show that the steering wheel angles can be accurately
estimated leveraging a wearable device on the driver’s wrist.
The estimated steering wheel angle (θest) can further facilitate
various safety and driver behavior monitoring applications,
which will be discussed in Section III-A. Although the real
steering wheel angle (θreal) could be measured more ac-
curately through the car’s built-in systems, the accuracy of
the estimated angle may still be useful for the applications
with lower accuracy requirements such as understeer/oversteer
detection. In Section III-B, we calculate the required accuracy
in estimated steering wheel angle in order to achieve desired
error rates.

A. Steering Wheel Tracking Applications Scenarios

Detecting Understeer and Oversteer. One of the critical
applications of steering wheel tracking is understeer/oversteer
detection. In the simplest terms, oversteer is what occurs
when a car steers by more than the amount commanded by
the driver. Conversely, understeer is what occurs when a car
steers less than the amount commanded by the driver due to
traction loss as illustrated in Fig 1a. In addition to estimated
steering wheel angle and real steering wheel angle, we define
another term, the Expected steering wheel angle (θexp) which



(a) Understeer and oversteer are
in blue and red. Green line repre-
sents driver’s intended steering.

(b) The real steering wheel angle
and the expected steering wheel
angle from car’s heading.

Fig. 1: Car and steering wheel for understeer/oversteer.

(a) No oversteer (b) Oversteer

Fig. 2: Estimated Steering wheel angle and corresponding True
positive, False Positive, False Negative, and True Negative
regions are illustrated.

is the steering wheel angle that can be calculated based on the
car’s movement. When there is no understeer or oversteer, the
expected and real steering wheel angles should be ideally equal
since the car moves as directed by the steering wheel. However,
when an understeering or oversteering incident happens, there
will be a difference between the two values. Therefore, under-
steer/oversteer can be detected when this difference exceeds a
threshold value (θth) during the car’s turn.

By combining basic circular motion laws and Ackermann
steering geometry [24], the expected steering wheel angle can
be calculated from centripetal acceleration and angular velocity
of the car with following equation:

θexp =
1

k
arctan

( 2ω2

(2a+ dω2)L

)
, (1)

where a, ω, d, and L represent centripetal acceleration, angular
velocity, width, and length of the car, respectively. Lastly, k is
the coefficient that maps car’s steering wheel angle to wheel
angle.

Curve Speed Warning. Generally, vehicles have over five
times higher accident rates on curves than that on straight
roadways [25]. Transportation authorities thus took actions,
such as placing dangerous curve warning, to prevent drivers
from moving through a curve at a dangerous speed. However,
there are still many sharp roadway curves without any warning
signs or advisory speeds posted. Additionally, accident risks
may still exist, even with warning signs, since the warning
signs may be overlooked.

Thus, one example application type that enhances driver
safety are Curve Warning Systems (CWS). These assess threat
levels for vehicles approaching curves and provide timely
driver feedback. The maximum safe speed of a vehicle for an
approaching curve is normally affected by both road conditions
(e.g., weather conditions) and vehicle behaviors, such as the
type of the vehicles (sedan, truck, etc.) and steering wheel
rotations. One possible CWS might use crowd-sourcing to
determine the maximum safe speed of a vehicle for each
upcoming curve by using historical safe turning data sets

of other vehicles passing this curve (i.e., without understeer-
ing/oversteering happen). The CWS would select the data sets
to match the road conditions and vehicle behaviors of the
current vehicle to narrow down suitable observational sets and
calculate the optimum speed of the vehicle for the curve. The
CWS could warn the driver visually if the speed of the vehicle
is larger than the calculated optimum speed.

Other applications. Tracking steering wheel usage can
lead to many other applications. For example, by comparing
estimated and expected steering wheel angles, not only during
the turns, but continuously, a car maintenance system can
decide whether or not a car needs alignment if there is
a persistent offset between estimated and expected steering
wheel angles. Also, the steering wheel angle expectation based
on online maps for a specific road can be utilized to detect lane
changes by comparing the estimated steering wheel angle. The
same system can further be useful to detect impaired driving if
abnormally frequent lane changes are detected. Similarly, the
system can be used to monitor driving styles and report dan-
gerous driving habits. Another interesting application would
be gesture-based input system, the driver could interact with
the vehicle by rotate his hand on the steering wheel without
actually moving it. Such a gesture-based input system can
enable drivers to change the radio volume without moving
their hand off the steering wheel. However, these type of
applications are beyond the scope of this paper.

B. Accuracy Requirement of Understeer/Oversteer Detection
We believe that the coarse data can be still useful for a

wide range of applications. In this section, we thus analyze
the steering wheel angle estimation accuracy needed to deliver
various minimums on classification performance for slip detec-
tion. We calculate the allowed deviation of estimated steering
wheel angle from real steering wheel angle for an exam-
ple oversteer detection application with performance criteria,
namely minimum slip detection angle (MSDA) and error rate.
(er). However, the similar calculations can be carried out for
understeer and lane change detection application scenarios.

These two metrics ensure that the system’s error rate will
always be less than er as long as the degree of slipping is
greater than MSDA. The metric we choose for the error rate
is Equal Error Rate which is the error rate of the system when
the probability of false positives, false oversteer detections, and
that of false negatives, missed oversteers, are equal. Therefore
in order to calculate the error rate, we need to define rate
of false oversteer detections and the rate of missed oversteers
first.

For the false positives, we need to consider the case where
the car does not slip. The real steering wheel angle and the
expected steering will be equal and have the value of θreal.
The estimated steering wheel angle can be modeled as a normal
distribution with mean θreal and σsteer standard deviation as
in Fig. 2a. The σsteer is the estimated steering wheel angle
requirement that the estimation algorithm needs to achieve the
aforementioned guarantees. Any θest angle that is greater than
θreal + θth will result in false positives. In order to calculate
the false negatives, we need to consider the case when the car’s
slipping causes θslipping degrees of difference between the real
steering wheel angle and the expected steering wheel angle.
The estimated the steering wheel angle can still be modeled
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Fig. 3: The required steering wheel accuracy (σsteer) for given
error rate (er) and slipping angle (θslipping) is plotted.

Error Rate (er) [%]
0.1 0.2 0.5 1 2 5 10

Minimum Slip 1 0.16 0.17 0.19 0.22 024 0.30 0.39
Detection 5 0.81 0.87 0.97 1.07 1.22 1.52 1.95

Angle 10 1.62 1.74 1.94 2.15 2.43 3.04 3.90
(MSDA)[o] 20 3.24 3.47 3.88 4.30 4.87 6.08 7.80

TABLE I: The required steering wheel angle accuracy (σsteer)
is given for desired error rates (er) and Minimum slip detection
angles (MSDA)

with the same normal distribution. The false negatives will
occur for the values of the estimated steering wheel angle
greater than θreal + θslipping − θth as shown in Fig. 2b. From
these figures, the σsteer can be calculated for given θslipping
and er can be calculated as follows

σsteer =
θslipping

2
√
2 ∗ erf−(1− 2er)

, (2)

where the erf() is the error function. The σsteer for some
er and θslipping are given in Figure 3. The figure shows that
the smaller θslipping values require higher accuracy in steering
wheel angle estimation system. Therefore, we need to set a
minimum slip detection angle in order to define the upper
limit of required accuracy. Some example values of required
σsteer are presented in Table I for different MSDA and er
requirements.

IV. SYSTEM DESIGN

In this section, we first provide an overview of our wearable
device based steering and driver tracking system. We then
present in detail the proposed hand on/off steering wheel
detection and the steering wheel angle estimation methods.

A. System Overview

The basic idea of our system is to use wrist-mounted
inertial sensors to capture the hand movements and wrist
rotation of the driver for tracking steering wheel usage and
angle. As shown in Figure 4, the system takes as input real-
time sensor readings from both the wearable device and its
paired smartphone including the accelerometer, gyroscope, and
magnetometer readings. It then performs coordinate alignment
to align the sensors’ readings of wearable device and smart-
phone under the same coordinate system. Coordinate aligment
utilizes magnetometer and accelerometer readings in order to
find the rotation of devices with respect to earth coordinate
frame and then finds an rotation matrix that maps one sensor’s
readings to the other sensor’s coordinate frame. The system
then detects whether a user with the wearable device is a driver
or a passenger using an existing technique which distinguishes
driver’s steering motion from other confounding hand move-
ments of passenger and achieves up to 98.9% accuracy [10].

The core elements of our system are the Hand On/Off
Steering Wheel Detection and Steering Wheel Angle Estima-
tion. If a driver is detected, our system then continuously
detects when driver’s hand is on/off the steering wheel. It
could be done by identifying when the drivers hand is moving
away from and moving back to steering wheel based on the
captured hand movements of the driver. During the periods
when driver’s hand is on the steering wheel, we further
estimate the turning angle of the steering wheel based on the
wrist rotation caused by the movement of rotating the steering
wheel. The output of our system, for example, driver’s hand
is on/off steering wheel and the steering wheel rotation angle,
could be used as input to build a broad range of driving safety
applications, such as curve speed warning, understeer/oversteer
estimation, unsafe lane changes, and distracted driving.

B. Hand on/off Steering Wheel Detection

As showed in Figure 4, in order to estimate whether a
driver’s hand is on or off the steering wheel, we first perform
Hand Movement Detection to capture all the driver’s hand
movements except for rotating the steering wheel. Intuitively,
for the period when the driver’s hand leaves the steering
wheel, there must be two movements. One is the Departure
Movement, which indicates driver’s hand moved away from
the steering wheel and happens at the beginning of hand off
period. The other is the Returning Movement, which means
driver’s hand is moving back to the steering wheel and happens
at the end of the hand off period. For each pair of departure
movement and returning movement, the driver’s hand always
moves to opposite linear and rotational directions with respect
to the steering wheel. Therefore, after hand movement detec-
tion, we perform Linear Direction Estimation and Rotational
Direction Estimation to extract the linear and rotational moving
directions of each hand movement. We then combine the
linear and rotational direction information to match each pair
of departure and returning movements. Thus, the period that
between each pair of matched movements are hand off steering
wheel period, the rest are hand on steering wheel periods.

Hand Movement Detection. To detect driver’s hand move-
ments with respect to the steering wheel, we need to eliminate
the effect of car’s motion from driver’s wrist sensor reading.
This could be done by subtracting the car’s acceleration and
gyroscope readings from the ones of the wearable device after
coordinate alignment. We then get the acceleration and angular
speed only produced by hand’s movement. We further smooth
the wearable device’s readings to reduce noise by using a
low pass filter. We experimentally find that the gyroscope
is more reliable for hand movement detection than that of
acceleration. We thus examine the peaks (i.e., local maximum)
of the magnitude of gyroscope reading to detect the time when
hand movements may happen.

After getting peaks of gyroscope magnitude, we perform
peak clustering in the time domain. As each movement could
be related to multiple continuous peaks in a specific time
domain, we could then filter out vibration noise and the
motion corresponding to slight hand movements (which are
also keeping hand on the steering wheel) by excluding those
clusters that contain less numbers of peaks. Therefore, after
peak clustering, we can get each hand movement, starting at
the first peak in each cluster and ending at the last peak in the
same cluster.



Fig. 4: System overview.

Fig. 5: Linear Direction Estimation

Linear Direction Estimation. During each movement
period, estimating the linear moving direction is helpful to
characterize and match the movements. For the three axis of
the car’s coordinate system, the x and y axis are always more
noisy. We thus always estimate the linear direction according
to z axis, namely the up and down direction.

As the hand always moves from one stationary state to
another stationary state for each hand movement, there will
be a speed up process and a slow down process. If the hand
speeds up towards the up direction (i.e., large acceleration with
negative readings) and then slows down, it means the hand is
moving up, and vice versa. We thus can exam the sign and the
magnitude of the acceleration to identify the moving direction
of the hand. Figure 5 & 6 show the acceleration and rotation
angle measurements from a wearable sensor placed on the arm.
As shown in Figure 5, the black horizontal dash and solid lines
show the ground truth when hand is on and off the steering
wheel respectively and eight curves show the movements we
detected. The acceleration pattern we mentioned above is
obvious for the 2nd, 3rd, 4th, 6th, 8th curve, but is indistinct
for 1st, 5th and 7th curve. It is because sometimes the effect of
gravity could not be perfectly eliminated. Therefore, we add
one more rule to estimate the movement direction. That is if
the maximum value of the z axis acceleration is less than 0.01,
this movement is a up movement (because the maximum value
is supposed to be a larger positive value). Therefore, based on
the two patterns we find in the z axis acceleration value, we
could estimate whether a movement is either a up movement
or a down movement.

Rotational Based Movement Matching. The main prin-
ciple of movement matching is the departure and returning
movements must have different moving directions. Thus, we
first find all adjacent paired movements with opposite direction
and regard all such pairs as potential matching. However,
some events such as sudden braking or bumpy road conditions
may cause dramatic changes of both the accelerometer and
gyroscope values, which may lead to an incorrect movement
detection and even an incorrect hand off period detection.

Time(s)
445 450 455 460 465 470 475 480

R
ot

at
io

n 
A

ng
le

(r
ad

)

0.5

0.6

0.7

0.8

0.9

1

1.1

13

14

15

Rotation Angle Magnitude
Up Movements
Down Movements

Fig. 6: Rotational based matching

As shown in Figure 6, Movement 13 is an incorrect hand
movement detection, while 14 and 15 are a pair of departure
and returning movements.

To solve this problem, we calculate the rotation angle of
the watch respect to the smart phone, and use its magnitude
to monitor the angle changes of the watch. Since the driver’s
hands always have slightly continuous movements when his
hands are on the steering wheel, while during the hand off
period, his hands are relatively stable, we developed a variance
filter to reduce matching errors. This filter simply calculates the
variance between two potential matching movements and sets
a threshold (0.002 rad in our system) to remove those match
with a large variance. In the example in Figure 6, the variance
between 13 and 14 is 0.004 rad while the variance between
14 and 15 is 0.0003 rad. We therefore match movement 14
and 15 together. By applying this rotational based movement
matching, the system provides more accurate hands on/off
steering wheel detection to facilitate steering wheel angle
estimation.

C. Steering Wheel Angle Estimation
Once steering wheel usage is detected, we further use the

wrist rotation of the smart watch to infer the steering wheel
turning angles. When the driver rotates the steering wheel,
the smart watch also experiences wrist rotation as it rotates
together with the steering wheel. The steering wheel angle
thus could be inferred from the wrist rotation of the smart
watch. In particular, we use the gyroscope readings of smart
watch to measure the wrist rotation for steering wheel angle
estimation.

In the coordinate alignment step of the system, we align
both the car’s and the smart watch’s coordinate systems with
the steering wheel’s. By aligning these coordinate systems, we
are able to project the gyroscope readings of both the car and
the smart watch to the plane of the steering wheel. We then
perform Data Calibration and Integration to remove the effect
of car’s motion (i.e., car’s rotation) and integrate the gyroscope
readings (i.e., angular velocity) to rotation angle. After this



Fig. 7: Holding position and the projected position of smart
watch on steering wheel.

step, we obtain the wrist rotation of smart watch with respect
to the steering wheel’s rotation. Such wrist rotation is then used
in Angle Estimation to infer the steering wheel angle based on
the constructed driver rotation profile in Profile Construction.
In this study profile construction is studied for a single driver
and a more generic driver rotation profile construction is left
as a future work.

Data Calibration and Integration. When a car makes
a turn, the gyroscope readings (i.e., angular velocity) of the
smart watch are a combination of the angular velocities of
the steering wheel rotation and the car. As the car’s angular
velocity can be measured by the phone inside the car, we
simply subtract the car’s angular velocity from the angular
velocity of the smart watch after coordinate alignment. We
then obtain the angular velocity of the smart watch which
solely corresponds to the steering wheel rotation. Such angular
velocity is then integrated to wrist rotation angle with respect
to the steering wheel. We define such wrist rotation as θwrist.

Profile Construction. Ideally, we expect the wrist rotation
θwrist equal to the steering wheel angle θreal when making
turns. However, we experimentally find that the wrist rotation
of the smart watch is usually less than that of the steering
wheel. This is because the driver bends his wrist in different
ways when holding the steering wheel under different turning
angles. As shown in Figure 7, before making a turn, the wrist
has a large angle to the steering wheel plane. The projected
location of the smart watch on the steering wheel is thus
close to the holding position. After a 90 degree turn, the
wrist angle to the steering wheel plane becomes smaller, which
leads to the projected location farther away from the holding
position. The rotation of the smart watch is thus smaller than
that of the steering wheel. Moreover, the attitude change of
the watch is mainly due to the wrist rotation instead of the
translation movement following the trajectory of the steering
wheel movements. Thus, the smart watch mainly rotates side to
side on the wrist. These factors makes the smart watch rotation
significantly less than that of the steering wheel rotation angle.

To address the aforementioned issue, we use a supervised
learning method to create a driver rotation profile. In particular,
we collect training data offline to create a mapping (i.e.,
a function f(x) such that θreal = f(θwrsit)) between the
rotations of the smart watch and the steering wheel turning
angles. This is based on the observation that people usually
consistently bend their wrists when turning. The steering wheel
turning angles thus can be inferred based on the wrist rotation

Fig. 8: Position of sensors and smartphone.
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of smart watch (i.e.,θwrist) and the created angle mapping (i.e.,
f(x)). To create the driver rotation profile, we use a gyroscope
sensor aligned with the steering wheel to measure the real
steering wheel angles, and then use liner regression to fit the
smart watch rotation θwrist to the measured steering wheel
angle. We experience with different models, such as linear,
quadratic and cubic fits, and find that the linear fit is simple
yet effective.

To construct the profile, we could also use a semi-
supervised approach. It uses the smart phone inside the car
to monitor the centripetal acceleration and angular velocity
of the car when making turns to calculate the angle of the
steering wheel. When there is no understeer/oversteer, the
steering wheel angle could be calculated based on the circular
motion laws and Ackermann steering geometry [24], as shown
in equation 1. We could then build the profile automatically
based on the real-time measurements of the θwrist and the cal-
culated steering wheel angles. After the profile is constructed,
we can then infer the steering wheel angle based on wrist
rotation of the watch θwrist for building higher level safety
applications, such as understeer/oversteer detection and curve
speed warning.

Angle Estimation. By plugging in the real-time θwrist to
the mapping profile f(x), we could infer the real-time steering
wheel angle as θest = f(θwrist).

(a) Highway (b) Local road (c) More movements

Fig. 10: Maps of commute routes.



V. PERFORMANCE EVALUATION

A. Experiment Setup
To evaluate our approach, We conduct experiments with

an Invensense MPU-9150 9-axis motion sensor, which is a
prototyping alternative to a wearable device. The motion sensor
contains 3-axis accelerometers, gyroscopes, and magnetome-
ters. In our experiments, the participants are asked to attach the
motion sensor to his/her left wrist, where people usually wear
watches. The motion sensor is paired with participant’s android
smartphone via Bluetooth. The smartphone is placed in the
middle cup holder with its coordinate system aligned with that
of the car. We align another motion sensor with the steering
wheel to record the ground truth of the steering wheel rotation
angles when making turns. In contrast to other steering-wheel-
mounted sensor based approaches our work is a low-cost and
unobtrusive design that can reach a much larger population and
focuses on finding the steering wheel angle without requiring
any additional sensors. However, obtaining the ground truth is
very hard with angle finders in a dynamic while the vehicle
is being used. As a consequence, we used steering-wheel-
mounted sensors to collect the ground truth. Our experiments
with static steering wheel showed that the error in steering-
wheel-mounted-sensors is negligibly small (less than 1◦) and
can be usable as ground truth. Figure 9 shows mean and
standard deviations in angle measurements from the angle
finder, the steering-wheel-mounted sensor, and the smartwatch.
All the other experiments are performed while the car is being
driven. Additionally, a GoPro camera is mounted over the
driver’s shoulder to record the ground truth of the driver’s hand
movements while driving.

The positions of these devices are shown in Figure 8. The
sampling rates of motion sensors and smartphones are set to
50Hz, which is supported by most off-the-shelf wearable and
mobile devices, such as the smart watches and fitness trackers.
The sensing data of the motion sensor is transmitted to and
stored at smartphone via Bluetooth by an app. We have two
drivers preform data collection with one driving Honda Civic
and using Nexus 5 smart phone and the other driving Toyota
Camry and using Nexus 6 smart phone.

We conduct experiments by driving on three routes with
different road conditions, as shown in Figure 10. The first two
routes, namely Highway Commute and Local Road Commute,
cover the highway and local road commutes (i.e., Figure 10
(a) and (b)), respectively. These two routes cover a wide range
of steering wheel angles as highways usually involve smooth
curves resulting in small steering wheel rotation angles, and
local roads often have sharp turns that cause large steering
wheel rotation angles. We collect data for 20 trips over
one month on these two routes and the driver is asked to
drive naturally. Additionally, in order to evaluate our hands
on/off the steering wheel detection algorithm, we intentionally
perform more frequent hand on/off movements during real
driving on a highway as shown in Fig. 10 (c) .

B. Hand On/Off Steering Wheel Detection Evaluation
We first evaluate how accurately we can detect the driver’s

hand is on or off the steering. We thus define the positive
cases as the driver’s hand is on the steering wheel and the
negative cases as the driver’s hand is off the steering wheel.
We measure the duration of hands on/off the steering wheel in

terms of number of seconds. Therefore, each positive/negative
instance corresponds to the driver’s hand is on/off the steering
wheel for one second. The one second’s resolution is good
enough to tolerate the error when we labeling the ground truth
manually by checking the video of each commute trip.

We use the true positive rate and true negative rate to
measure the overall performance of the hands off/on steering
wheel detection. The true positive rate represents the propor-
tion of the period the hand on the steering wheel could be
correctly determined, while the true negative rate represents
the proportion of the period the hand off steering wheel
could be correctly identified. In other words, the true positive
rate reflects how accurately our method could activate the
steering wheel angle estimation, whereas the true negative rate
shows how accurately the method could trigger unsafe driving
behavior notification, for example warning driver when his
hand is off the steering wheel.

Overall, our hand on/off steering wheel detection achieves
a 99.9% true positive rate and a 89.2% true negative rate
for the normal commute data set, and a 99.3% true positive
rate and an 88.4% true negative rate for the frequent hand
movement commute data set. We also evaluate our system
in two different commute types: highway and local road.
Figure 11 (a) compares the performance of our method on
three routes. We observe that different routes have similar
performance, which demonstrates our method is robust to
different road conditions and different frequencies of hand
on/off the steering wheel events. By combining the results
from these three routes, our method achieves a 99.4% accuracy
on detecting hand on steering wheel periods and an 88.8%
accuracy on detecting hand off steering wheel periods.

We next evaluate how accurately our method can detect
when the hand is off the steering wheel for different types of
hand movements. In the experiments, we tested three different
typical hands-off events of drivers, namely hand on leg, hand
on the armrest and adjusting sun visor. Figure 11 (b) compares
the true negative rates and false negative rates for these three
hands-off events. We observe that for both hand on leg and
hand on armrest events, the true negative rate remains above
91.5% and false negative rate is less than 8.5%. However, for
reaching for the sun visor event, the performance decreases
to as low as 81.5%. This is mainly because reaching the sun
visor has a smaller moving duration and continuous moving
process than that of other two events. Thus, it is relative harder
to match the hand movements to the departure movement and
returning movement.

C. Steering Wheel Angle Estimation Evaluation
For the steering wheel angle estimation, we collect 109

turns ranging from 120 degrees right turn to 90 degrees left
turn in both the highway commute and the local road commute.
The rotation of the steering wheel for these turns is up to 134
degrees. The distribution of the steering wheel rotation for the
collected turns is shown in Figure 12. In particular, there are 25
turns with steering wheel rotation less than 30 degrees, 43 turns
with steering wheel rotation in between 30 to 60 degrees, and
41 turns with steering wheel rotation larger than 60 degrees.

We use two types of errors, true error and absolute
error, to evaluate the performance our steering wheel angle
estimation. The true error is defined as the real steering
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Fig. 11: Hand on/off detection performance.
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Fig. 12: The distribution of the steering wheel rotation for all
the turns.

[0,30] (30,60) > 60 All turns
Mean 0.000063 -0.00012 0.00032 0.000046
Std. 2.21 3.82 6.12 4.93

TABLE II: The mean and standard deviation (in degree) of the
true error for the turns with different steering wheel angles.

wheel rotation minus the estimated steering wheel angle (i.e.,
θreal − θest), whereas the absolute error is the magnitude
of the difference between the true rotation and the estimated
angle (i.e., ||θreal − θest||).

We first evaluate how the estimated steering wheel angle
could detect the slipping of understeer/oversteer. Table II
presents the mean and standard deviation of the true error
under the turns with different rotation ranges of the steering
wheel. We observe that the mean of the true error is about zero
for all the turns and the turns under different steering wheel
rotation ranges. We find the standard deviation of the true error
increases when increasing the steering wheel rotation ranges.
This is because that with larger rotations on steering wheel,
the wrist movement experiences larger variation as well. As we
rely on the angle mapping profile f(x) to infer the steering
wheel angle, the larger wrist movement variation consequently
produces larger variation of the angle estimation.

In particular, Figure 13 (a) compares the standard deviation
of the true error for the turns with different steering wheel
rotation ranges. We next compare the standard deviation ob-
tained in our experiments with the ones presented in Table I
to evaluate the effectiveness of understeer/oversteer detection.
We find that the standard deviation for the turns with steering
wheel rotation less than 30 degrees is 2.21 degree which
results in approximately 99% accuracy when detecting 10
degrees slipping or about 90% accuracy in detecting 5 degrees
slipping. Whereas for the turns with steering wheel rotation
in between 30 to 60 degrees, the standard deviation is 3.82
which corresponds to about 99.5% accuracy when detecting
20 degree slipping or more than 90% accuracy in detecting
10 degree slipping. The standard deviation for the turns with
wheel rotation larger than 60 degree is 6.12 degree which leads
to about 95% accuracy when detecting 20 degree slipping.
Note that it’s more likely that larger rotation of the steering
wheel will cause larger angle of slipping. Even if the standard

deviation increases when increasing the size of the steering
wheel angle, it could still produce high accuracy, 95% to 99%
for example, in detecting increased size of slipping angle.
We next investigate the absolute error, which describes the
magnitude of difference between the true steering wheel angle
and the estimated angle. Figure 13 (b) depicts the mean
absolute error under the turns with different rotation ranges
of steering wheel. Overall, we observe that the mean error is
less than 3.4 degrees for all the turns. Moreover, the turns
with larger steering wheel rotation have relative larger mean
error. Specifically, the mean error for the turns with less than
30 degree steering wheel rotation is 1.7 degrees, whereas it is
2.73 and 4.38 degrees for the turns with rotation in between 30
to 60 degrees and rotation larger than 60 degrees, respectively.

Figure 13 (c) shows the cumulative distribution function of
absolute error under the turns with different rotation ranges.
Similarly, we observe the curve shifts to right when the rotation
of steering wheel becomes larger indicating larger rotation
of steering wheel has relative larger error. The median error
increases from 1.45 to 1.76 and to 3.04 when the turns with the
steering wheel rotation increases from the range of [0, 30] to
(30, 60) and to larger than 60 degrees. And the 80% percentile
error for the case of [0, 30], (30, 60) and larger than 60 is 2.66,
4.7 and 7.55 degrees respectively. We also observe a large error
(e.g., 10 degrees) at the tail of the CDF curve. This is because
the driver occasionally bends his/her arm very differently for
the same size of steering wheel angle. However, the percentage
of such large errors is very small for the turns with less
than 60 degrees rotation of steering wheel. For example, it
is less than 3% for the case of (30, 60) and less than 5%
for all the turns. And the large error becomes less significant
for the turns with rotation of steering wheel larger than 60
degrees. It still, however, leaves us room to further improve
the angle estimation method for example by combining the
accelerometer and gyroscope readings [26]. Overall, the above
results show that our steering wheel angle estimation method
is effective with a mean error less than 3.4 degrees.

VI. DISCUSSION AND CONCLUSION

In this work, we exploit the opportunity of using wristworn
wearable devices to enable activity recognition of unsafe driv-
ing. In particular, we develop the fundamental techniques in
hand on/off steering wheel detection and steering wheel angle
estimation to provide more detailed information in tracking of
driving behaviors. We examine whether our proposed vehicle-
independent techniques leveraging wearables could achieve
sufficient accuracy for building driving safety applications.
Through various real-driving scenarios, we show that our
approach can achieve hand on steering wheel detection with a
true positive rate around 99% and provide warning of unsafe
driving when a driver’s hand is off the steering wheel with a
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Fig. 13: Steering wheel angle estimation performance.

true negative rate above 80%. Additionally, our system can
achieve accurate steering angle estimation with errors less
than 3.4 degrees to facilitate applications such as curve speed
warning and understeer/oversteer detection.

Open challenges remain towards realizing automatic steer-
ing and driver tracking using sensing techniques independent
of vehicles. A limitation of our approach is its statistical nature
for safety applications. E.g., detection accuracy decreases if
the driver steers only with the watch-less hand. However,
we still envision that there exist a range of human behavior
modification and attention direction uses for which statistical
approaches are useful. Furthermore, our algorithms only need
to be activated during driving. For most people, this only occu-
pies a small portion of their day. Thus, the energy consumption
incurred by our system should not pose any significant burden
to the wearables.

Another potential shortcoming is that we only construct
and test the profile of wrist rotation with respect to the steering
wheel angle for one driver. We expect such profile is relative
consistent for different drivers as the wrist movements are
highly constrained by the rotation trajectory of the steering
wheel. Still, re-training or fine-tuning the profile may be
required for different drivers. Such training efforts, however,
could be mitigated by using the semi-supervised learning based
method proposed in profile construction step. Furthermore, dif-
ferent drivers may have different styles of wearing the device.
For example, the panel of the smartwatch could face down for
one driver but face up for another. As the postures/attitudes of
the wearable device could be detected by the motion sensors,
different postures thus could be calibrated to the one matches
the construed profile based on the detected posture.
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